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Upper boundary: temperature/precipitation, weather, climate [Climate Change ?]

Lower boundary: topography, vegetation, geology, soil structure, ** [Human Activities ?]

1. Overview of hydrological model

Hydrological model is an effective way to investigate and understand the mechanism of complex

processes in the hydrological cycle, and also an efficient tool to cope with practical water problems.
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Catchment

characteristics
Homogeneity Heterogeneity

Advantage simple structure, easily applied
clear physical meaning of the model 

parameters

Weakness
can't reflect the real watershed spatial 

variability
complex、more parameters
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1. Overview of hydrological model

System model Conceptual model Physical model

Method regression analysis 
physical concept & 

empirical formula

physical law & basin 

characteristics 

Property black-box model grey-box model white-box model

Model

1. Sherman unit line

2. Nonlinear system

3. Neural Network Model

1. Tank model

2. Stanford model

3. Xinanjiang model

1. SHE

2. VIC

3. SWAT

Lumped modelLumped model Distributed modelDistributed model



Errors 

Input: true value

Real hydrological process

Output: ture value

Hydrological model

(1) Model inputs

Input: observed

Output: simulated

(2) Model Parameters

(3) Model structure

Output error
Observed

Three sources of errors

2. Uncertainties in hydrological prediction
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;;;;

in which， is measured rainfall；

is a normal multiplier，mean value 

is m, variance is      , in this study

m ∈[0.95,1.05]，

∈[1e-5,1e-3]。

3. Uncertainties estimation method
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One way to reduce input uncertainty is using input error 
multiplier.
One way to reduce input uncertainty is using input error 
multiplier.



�Method 1：：：：
For a given river basin and model structure, 
one set of optimal parameters could be found 
[calibration].

Representative method ：：：：

Genetic Algorithm (GA)

SCE-UA (Shuffled Complex Evolution Algorithm; Duan 

et al., 1992)

�Method 2：：：：
For a given river basin and model structure, a 
series of sets of parameters obey a certain joint 
probability distribution.

Representative method：：：：

GLUE (Generalized Likelihood Uncertainty Estimation; 

Beven et al., 2001)

SCEM-UA (Shuffled Complex Evolution Metropolis 

Algorithm; Vrugt et al., 2003)

Parameter calibration
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Two methods to reduce parameters uncertainty:Two methods to reduce parameters uncertainty:



Different models have different advantages. The result computed from 

a single model is always limited. Combining multi-model predictions 

can obtain better results, such as

� Weighted average method (Bayesian model averaging, BMA)

� Simple Average Method

� Artificial Neural Network

Reference：：：：
[1] Ajami NK, Duan QY, Sorooshian S, 2006. An integrated hydrological Bayesian multimodel combination framework: Confronting 

input, parameter, and model structural uncertainty in hydrological prediction. Water Resources Research, 43, W01403.

[2] Duan QY, Ajami NK, Gao XG, Sorooshian S, 2007. Multi-model ensemble hydrological prediction using Bayesian model averaging. 

Advances in Water Resources, 30, 1371-1386.

[3] Liang ZM, Wang D, Guo Y, Zhang Y, Dai R, 2012. Application of Bayesian model averaging approach to multi-model ensemble

hydrologic forcasting. Journal of Hydrologic Engineering. Doi: 10.1061/(ASCE)HE.1943-5584.0000493.

The way to reduce model structure uncertainty:
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Input uncertainty

Structure uncertainty

4. Multi-model hydrologic prediction uncertainties analysis
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15000  setParameter uncertainty



Study Area

Mishui Basin

Tributary of:

the Xiangjiang River 

Rain gauge:

35 stations 

Drainage area :

9 972 km2
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Xinanjaing model

Zhao et al. (1980)

Saturation excess runoff

Hybrid Runoff model (HYB)

Combine the infiltration excess (Horton) runoff and saturation excess 

(Dunne) runoff by means of the combination of spatial 

distribution curve of soil tension water storage capacity and that 

of infiltration capacity.

HyMod

Moore et al. (1985)

Saturation excess runoff

HYB

Hu et al. (1993)

Two runoff mechanisms
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Quick-Flow tanks

Slow-Flow tanks



Parameter Physical meaning Range

Kc ratio of potential evapotranspiration to pan evaporation 0.5-1.5

WUM water capacity in the upper soil layer 10-40

WLM water capacity in the lower soil layer 50-90

WDM Water capacity in the deeper soil layer 10-70

B exponent of the tension water capacity curve 0.1-0.5

C coefficient of deep evapotranspiration 0.1-0.3

EX exponent of the free water capacity curve 1-1.5

SM the free water capacity of the surface soil layer 10-60

KI0 outflow coefficients of the free water storage to interfolw KI+KG=0.7

KG0 outflow coefficients of the free water storage to groundwater 0.1-0.5

CI0 recession constant of the lower interflow storage 0.1-0.9

CG0 daily recession constant of groundwater storage 0.9-0.999

CS0 recession constant for channel routing 0.1-0.5

KE Slot storage coefficient 20-24

XE Flow proportion factor 0.1-0.5

15 parameters of the XAJ model , including their physical meanings and numeric range 
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Parameter Physical meaning Range

Kc ratio of potential evapotranspiration to pan evaporation 0.5-1.5

WUM water capacity in the upper soil layer 10-40

WLM water capacity in the lower soil layer 50-90

WDM Water capacity in the deeper soil layer 10-70

B exponent of the tension water capacity curve 0.1-0.5

bx Infiltration capacity distribution curve index 0.1-2

f0 The average maximum infiltration capacity 5-30

fc The average stability infiltration capacity 0.1-10

k Infiltration capacity attenuation coefficient 0.1-0.9

CS recession constant for channel routing 0.1-0.5

CG daily recession constant of groundwater storage 0.9-0.999

C coefficient of deep evapotranspiration 0.1-0.3

KE Slot storage coefficient 20-24

XE Flow proportion factor 0.1-0.5

14 parameters of the HYB model , including their physical meanings and numeric range 
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Parameter Physical meaning Range

Kc ratio of potential evapotranspiration to pan evaporation 0.5-1.5

Cmax Max height of soil moisture accounting tank 1-1000

bexp Distribution function shape parameter 0.1-2

Alpha Quick-slow split parameter 0.1-0.99

Nq Number of quickflow routing tanks 1-8

Rs Slowflow routing tanks rate parameter 0.001-0.1

Rq Quickflow routing tanks rate parameter 0.1-0.99

KE Slot storage coefficient 20-24

XE Flow proportion factor 0.1-0.5

9 parameters of the HyMod , including their physical meanings and numeric range 
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Validation statistical indices

Indices for evaluating 

the prediction interval

Indices for evaluating 

the prediction series
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Containing rate

Average bandwidth

Average deviation

amplitude
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The BMA-combined streamflow shows a good agreement with observed series. The 

95% of prediction interval contains most of the observed values.

SCE-UA:

MCMC

100 sampling
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4. Overview of hydrological model

The average bandwidth of  1000 sampling prediction interval is wider than that of  100 
sampling. The 1000 sampling prediction interval has a higher containing rate.

SCE-UA:

MCMC

1000 sampling
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The prediction interval by SCEM-UA is better than that by SCE-UA.

SCEM-UA:
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SCE-UA Simulation

The BMA-combined streamflow series is superior to that of the best individual predictions, with a 

larger NSCE, comparable BIAS and smaller RMSE, especially in validation period.
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SCEM-UA Simulation

The performance of the SCEM-UA simulation is equivalent to that of the SCE-UA 
simulation in terms of NSCE, BIAS and RMSE . The BMA-combination method   get the 
optimal streamflow simulation.



Validation statistical indices of the 95% prediction interval

21Notation: CP is Calibration Period, VP is Validation Period

The red one means the best value in the column. The performance of the SCEM-UA based

prediction interval is superior to that of the SCE-UA based prediction interval in terms of

Containing rate (CR) and Average deviation amplitude (D).



1. Two parameter optimization algorithms (SCE-UA &

SCEM-UA) generate good streamflow simulations;

2. SCEM-UA algorithm results in better estimation for the

prediction interval than SCE-UA algorithm;

3. The Bayesian Model Averaging (BMA) method can

improve the streamflow prediction efficiency and

quantitatively give the uncertainty bounds for simulation, as

applied for reducing model structure uncertainty.

Conclusion 1
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5. Using multi-satellite real-time precipitation estimation for 

ensemble streamflow simulation
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Terra

Aqua

Grace

QuikScat

Sage

SeaWinds
TRMM

Toms-EP

UARS

Landsat 7

SORCE

ACRIMSAT

EO-1

TOPEX/Poseidon

SeaWiFS

ERBS

Jason

NASA Earth Observing System

EOS

Commonly used 10 kinds global satellite precipitation data

1) The near Real-Time product(i.e. TRMM 3B42RT , 3   hourly, 0.25o××××0.25o , 50oNS) 

about 3-9 hours after real-time, Jan 2002 to present;

3) The near Real-Time product(i.e. CPC CMORPH, 3-hourly, 0.25o××××0.25o , 60oNS)

about 18 hours after real-time, Dec 2002 to present.

2) The near Real-Time product(i.e. PERSIANN, 3-hourly, 0.25o××××0.25o , 60oNS)

about 18 hours after real-time, Dec 2002 to present.
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Monthly basin averaged precipitation time series
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3B42V6 : BIAS - 4.54%

(Best one due to error adjustment)

3B42RT : BIAS - 42.72%

PERSIANN: BIAS - 56.80%

CMORPH: BIAS - 40.81% 



�Parameter uncertainty:

SCEM-UA algorithm (Shuffled Complex Evolution Metropolis, Vrugt et al., 

2003)

�Model：：：：

Grid Xinanjiang model

�Input bias and uncertainty (simple error model)：：：：

Error model 1.

Error model 2.
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3B42RT

PERSIANN

CMORPH



The BMA combined simulation and the calculated  95% prediction interval are 

both with a severe underestimation for streamflow due to the large BIAS of the 

raw satellite precipitation over daily scale.

Case 1:

Input:

Raw SP data

Parameters:

Gauge prec. 

calibrated
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Monthly 95% uncertainty interval and BMA method also shows 

underestimation for streamflow, similar as daily situation.

Calibration period: 

NSCE=-0.29, CR=25.00%
Validation period: 

NSCE=-0.30, CR=8.33%
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Case 1:

Input: Raw SP data



By introducing the precipitation error multiplier, the behavior of the simulated streamflow and 
calculated 95% prediction interval were significantly improved on daily scale.

Case 2:

Error model 1 

for

Satell_Prec.

Parameters:

Recalibrated
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Calibration period: 

NSCE=0.64, CR=83.33%

Validation period: 

NSCE=0.75, CR=83.33%
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Monthly 95% uncertainty interval and BMA method 

perform better than that in Case1.

Monthly 95% uncertainty interval and BMA method 

perform better than that in Case1.

Case 2:

Input:

Error model 1



By introducing the precipitation error model 2, the behavior of the simulated streamflow and 

calculated 95% prediction interval were improved significantly.

Case 3:

Input:

Error model 2

Parameters:

Recalibrated
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Calibration period: 

NSCE=0.74, CR=86.11%

Validation period: 

NSCE=0.73, CR=86.11%

Monthly 95% uncertainty interval and BMA method show a 

significant improvement if compared with Case 1.
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Case 3:

Input:

Error model 2



Validation statistical indices of simulated streamflow series
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Notation.  CP is Calibration Period, VP is Validation Period

BMA (day)

BMA (day)

BMA (month)

BMA (month)

In Case 2 and Case 3, by introducing a precipitation error multiplier and a precipitation error model 

respectively, the behavior of the simulated streamflow was significantly improved. The BMA combination 

method generates the optimal simulation. Case 3 is a little better than Case 2.



Validation statistical indices of the prediction interval

34Notation: CP is Calibration Period, VP is Validation Period

BMA (month)

BMA (day)

BMA (day)

BMA (month)

Also, by introducing a precipitation error multiplier and a precipitation error model, the behavior 

of the simulated prediction interval was significantly improved. The BMA method generates the 

optimal prediction interval. Case 3 is a little better than Case 2.
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The performance of Case 2 or Case 3 simulation in terms of NSCE, BIAS and CR is similar to the 
simulation by TRMM 3B42V6 with smallest errors of satellite precipitation data.
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The simulated evapotranspiration and runoff in Case 2 and Case 3 are equivalent to the 

simulation by gauged precipitation and TRMM 3B42V6 data. It gives a good estimation on 

elements of water balance.



1. Three kinds of real-time satellite precipitation data sets have a 

large underestimation compared to gauged values. Streamflow 

simulation performed bad as the raw satellite precipitation data 

were taken as model input. 

2.  Using the precipitation error multiplier and the precipitation 

error model, the behavior of the simulated streamflow and 

calculated prediction interval were significantly improved. 

3.  The BMA combination of the multi-satellite precipitation 

simulations generate a much better prediction and a much more 

reliable prediction interval.

Conclusion 2

37



38

Uncertainty analysis method is feasible in 

hydrological practice.

� It is necessary to evaluate the uncertainty in application

� Uncertainty analysis can help understanding hydrological

character.

Combining inputs or models can improve the 

performance of hydrologic simulation.

� Application of multiple source data

� Select suitable hydrological models

� Select good combining method (BMA)

6. Suggestions



Thank you for your attention !


